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We have undertaken an analysis of the distortions in the flow of heat in an 
object, said distortions attributable to the presence of a heat-metering ther- 
mometer, and we have derived formulas to estimate this measurement error. 

It is impossible to measure the real value of the flow of heat in an object by means 
of a gradient-type heat-metering thermometer [I] mounted on the surface of an object because 
of the perturbations that this device introduces into the earlier existing distribution 
of temperatures. We know of a formulation of the problem of introducing correction factors 
into the readings of a heat-metering thermometer located at the surface of a body; however, 
the solution of this problem has not yet been brought to a form convenient for practical 
calculations [2]. 

Let us examine the case in which we measure the stationary flow of heat through the 
surface (half space) of a massive body with thermal conductivity % by means of a gradient 
disk thermometer of radius R, thickness h, and thermal conductivity %t, mounted on the object 
in the manner shown in Fig. i. It is assumed that the flow of heat through the object is 
formed under the action of an external radiant flux of density q, with the exchange of heat 
with the ambient medium, the latter exhibiting a temperature t. The intensity of the convec- 
tion-radiation heat exchange with the medium is characterized by the heat-transfer coefficient 
s0, while the absorption of the flow q is characterized by the absorption coefficient A 0 of 
the body. 

The undistorted temperature field in the object (without the installation of the ther- 
mometer) is one-dimensional and near the surface of the object is determined by the relation- 
ship 

~(z) = ~ - -  ~-~!Z. (1) 

where the density of the heat flux entering the object (its true value) is given by 

~b ~ dto 1 qo . . . . . . .  o~o ( t - -  to) + Aoq. 
dz I,z=o 

Because of the differences between the thermophysical properties of the thermometer 
and the properties of the object, the mounting of the thermometer on the object changes 
the coefficients s 0 and A 0 by s t and A t and leads to the appearance of a new and distorted 
temperature field t(r, z) in the object. The density of the heat flow is given by 

~t et(r) = ~ It" tt(r)! + A e = -~ Art(r), 

directed at the external surface of the thermometer , and creates the following temperature 
drop across the thickness of the thermometer: 

a r t { r )  = tc (r)--t(r ,  z)l~=o, O < r ' ~  R. 

The measured value of the heat flow qe (the readings of the thermometer) will depend 
in the general case on the size of the area occupied by its sensitive element, the temperature 
values t(r, 0) within the object beneath the surface of the thermometer, as well as by the 
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magnitudes of the radial flows of heat which arise within the thermometer itself. Taking 
the effect of the above-enumerated factors into full account requires analysis of the tempera- 
ture field within the system formed by the thermometer and the object, and this must be 
compared with the undistorted field within the object. 

If we neglect the radial flows in the thermometer (this results in elevated measure- 
ment errors), the problem of accounting for the distorted effect of the thermometer leads 
to the solution of the Laplace equation 

O~ ~ OzO. | O0 =0 (2 )  
0 7 "  - ~ r  2 ~1- irr Or 

f o r  t h e  t e m p e r a t u r e  p e r t u r b a t i o n  %(r ,  z)  = t ( r ,  z )  - t 0 ( z )  i n  t h e  r e g i o n  0 ~ r < ~, 0 
z < ~ under the boundary conditions of perturbation attenuation at a distance from the ther- 
mometer 

Oz' .| = O r - r . .  (3 )  

and the boundary conditions 

[ O0 _ r - Ar Oo(r--R)] I =abe(r - -R) ,  (4) 
Oz ~, ~ *o~~ =, 

in which 

b i ~ = _  

I I ~ at 
A ~ = - -  ~ t--CtO' i t =  ~-~0 - - ,  

1 + ~  t k ~t =0 

t o =  ~oR k = 2R ab = ht--b,  
~. ' h ' 

1 " | ~  ( t - -  to ) '+  A ~ ] ,  b = " 1 | a .  ( t - -  to) + Aoq], 

with the symbol o(r - R) denoting the unit function 

I, O ~ r < R ,  
' ~ ( r - - R ) =  0, r > R .  

With c o n s i d e r a t i o n  of  (3 ) ,  app ly ing  the  i n t e g r a l  Hanekl t r a n s f o r m  LH[O(r, z)] = O(p, 
t o  Eq. ( 2 ) ,  we f i n d  

0(p, @ = A(p)exp(--p~. 

(4): 

z) 

(5) 
In order to determine the coefficient A(p) we can use the transformed boundary condition 

[~b+ ~ O ( r . ,  o)] RJIp(pR) _ dOdz [~=o ~os 0 (p, 0), 0 ~ r ,  ~ R, (6 )  

in which the quantity %(r,, 0) appropriate to the additional definition has been introduced 
through the theorem on the average value for the calculation of the integral 

~ rJ o (pr) 0 (r,iO) o (r --  R) dr = 0 (r,, O) ( 7 ) R J1 (pR) 
I 

o P 

J0 and J I are Bessel functions of the first kind, of orders 0 and i. 

Substitution of expression (5) into (6), with consideration of (7), yields the value 

A (p) = R z J1 (pR) A., 
pR + ~ pR 

where 
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Fig. i. Heat exchange model: i) object; 2) heat-metering 
thermometer. 

A, =abR+~Afi(r , ,  0); ~A=~c--~;  ~ -  1 ~ ~t .  
1 + ~ t  ao 

Applying the inverse Hankel transform to (5), we obtain the sought relationship for 
the temperature perturbation 

(r, z) = - -  A ,  J1 (x) do (px) exp (-- xz) dx 
x + ~  

where x is the variable for which the integration is carried out; p = r/R; z = z/~. 

On the basis of Eq. (8) we determine the change in the thermal perturbation within 
the object in the radial direction and through the depth: 

4 (x) 4 (px) dx ~ dt (x) exp (-- xz) dx 

~(r, O) o x + ~  ~(0, z) Jo x + ~ ,  

Jo x + r ~  Jo x + ~  

(8) 

(9) 

with respect to the maximum perturbation in temperature ~(0, 0) at the center of the area 
occupied by the heat-metering thermometer. 

As we can see from Fig. 2, with an increase in the Blot number ~0 (an increase in the 
heat-transfer coefficient s 0) we have a reduction in the zone in which the temperature is 
perturbed within the object, as a consequence of the presence of the thermometer. The dimen- 
sions of this perturbation zone in the r direction are considerably smaller than those of 
the perturbation zone in the z direction: thus, for the case G0 = 1 the magnitude of the 
ratio O(0, z)/8(0, 0) in the case of z/R = 2, 5, and I0 amounts, respectively, to 0.13, 
0.03, and 0.009, while the quantity 8(r, 0)/8(0, 0) in the case of r/R = 2, 5, and I0 is, 
respectively, equal to 0.08, 0.007, and 0.001. 

In actual designs the sensing element of a thermometer occupies but a small portion 
of its volume, bounded by the radius R e . The thermometer readings correspond to the magnitude 
of the complete heat flow Qe, passing through the segment 0 ~ r ~ R e of area S = ~Re 2 in 
which the sensing element of the thermometer is located: 

where Q0 = -X~Re 2b is the real value of the total heat flow (in the absence of a thermometer) 

through that same area: / dr(t, z) I \ and /d~(r, z) \ represent the values of the 
\ dz ]z=o / \ dz ~-o / 

temperature and perturbation gradients averaged over the area S. 
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Fig. 2. Temperature perturbation within the depth of the ob- 
ject (a) and in the radial direction (b) relative to the maximum 
perturbation of the temperature %(0, 0) in the center of the 
area occupied by the heat-meterlng thermometer as a function of 
the Biot criterion ~Q: I) ~o = O; 2) 0.05; 3) 0.11 4) 0.5; 5) 
1.0. 

The relative error in the measurement of the heat flow is determined in the form 

,5---- Oe-- Q~ I / d~(r, z) J \ 
Qo = -~  \ dz I~o /" 

(io) 

The average value of the temperature perturbation gradient in the segment 0 ~ r ~ R e, 
found in Eq. (i0), can be found by means of the solution for (8): 

/ d~)(r, z) l >= 2A. i..Ji(x)!,(~,x)d~ 
(li) 

in which the value of A, is determined from the condition that this solution satisfy boun-, 
dary conditions (4), averaged over the area ~Re 2 

Here Pe = Re/R" 

Substituting (12) into (ii), and then (ii) into (i0), we obtain the sought relationships 
to estimate the absolute measurements errors A(p e) and the relative measurement errors ~(pe ) 
for the flow of heat at the surface of the object being investigated: 

A(~) = Q~-- % = ~R2~qd< 11 + ~c~(~, P~l-t (13) 

B(p~= Q~--Q" =K[I +~*(~, p~]-~, (14) % 

where 

K _ ~ ,  ! ..... q t _  1. - - J  a ' 

(15) 
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Fig. 3. The errors ~ (i) in the thermometer readings as a 
function of C0 when k = 20 (a) and as a function of the param- 
eter k when C0 = 1 (b) for Xt/X = i0 (i), 5 (2), 2 (3), i (4); 
0.5 (5) ,  0.2 (6) .  

i JI(x) JI(P x) dx 

..r 09 = x ( x + ~ )  ," (16) 
i Jx (x) J1 (Peg) dx 
o x + ~ ,  

qt = ~t (t - to) + Atq; q0 = ~0( t - to) + A0q" 

Assuming in (16) that Pe = i and Pe = 0, from (14) we obtain expressions to estimate 
error for the case in which the sensing element occupies the entire surface of the thermo- 
meter (R e = R) or is concentrated at the point: 

8(1) = K [ I +  ~O(G, 1)1 -~, (17) 

6(0) = K t l  + ~co (~, o)1 -*. (18)  

The nmnerical values of the integral r Pe), depending on Go and Pe, have been calcu- 
lated by means of a computer and can be found in Table i. 

To refine the regions in which expressions (13) and (14) are effective, unlike condi- 
tion (7) obtained on the basis of the theorem of the average value, we will make use of 
the method of finding O(r,, 0) from the condition of local satisfaction of solution (8) with 
respect to boundary condition (4), when the parameter r, assumes the value of the instan- 
taneous coordinate r. Then the expression for the distortion of the temperature at z = 0 
can be written in the following form: 

where 

0 (r, O) = - -  A , I  (G, P), (19)  

A, = , h a  , Z r O) = J '  (*) 4 
1 -{- ~AI (~o, P) ~ x + ~o 

The temperature perturbation @(r, 0) at the surface of the object with respect to the 
maximum perturbation ~(0, 0) is determined by the relationship 

@(r, O) I([o, p) l+~Al(~o, O) ~ d~(x)dx 
I(~o, 0 )=  (20) 

(o,o) I(~o, o) 1 + ~ j ( ~ o , p )  ' o j x + g o  

Let us present the integral l(C0, P) in the form of l(C0, P) = l(C0, 0)f(p) and let 
us make use of the approximation f(p) = 1 - Ap n. Then instead of (20) we obtain the expres- 
s ion 

O(r, 0) _ 1 {lq-~cCD(~o, 0)--  1 
0 (0, 0) 1 +[ccD (~o, 0) " 1 - -  ~oI (to, 0) 
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TABLE i. Values of the Integral r162 Pe) 

0 

0 1 
0,01 0,986 
0,02 0,973 
0,05 0,953 
0,1 .0,930 
0,5 0,871 
1,0 0,856 

pe  

0, I I 0,2 

!0,997 0,993 
0,982 0,978 
0,972 O,968 
0,951 0,947 
0,929 0,925 

i0,869 0,864 
i0,854 0,848 

0,3 I 0,4 

0,987 0,978 
0,972 O,963 
0,962 0,952 
0,940 0,931 
0,918 J0,908 
0,855 10,843 
0,838 10,823 

0,5 I 0,6 

0,966 0,951 
0,951 0,936 
0,940 0,925 
0,918 0,903 
0,895 ] 0,879 
0,827 J0,807 
0,804 ]0,781 

0,7 J 0,8 

0,933 0,910 
0,917 0,894 
0,905 0,883 
0,883 0,860 
0,859 0,834 
0,783 0,752 
0,751 0,715 

0,9 

0,883 
0,867 
0,855 
0,831 
0,804 
0,715 
0,671 

1,0 

0,849 
0,834 
0,822 
0,797 
0,769 
0,668 
0,615 

TABLE 2. Values of the Integrals le(~0 , Pc), I(~0, 0) 

O) P,e 
o,, I I o,, i I 1,o 

0 
0,01 
0,02 
0,05 
0,1 
0,5 
1,0 

1 0,050 0,099 
0,980 0,049 0,097 
0,954 0,048 0,095 
0,909 10,045 0,090 
0.,851 J 0,042 0,085 
0,607 t0,030 0,060 
0,461 O,O46 0,023 

0,148 0,196 
0,144 10,191 
0,142 0,187 
0,135 0,178 
0,126 i0,166 
0,090 10,119 
0,06810,090 

0,242 0,285 
0,235 0,278 
0,231 0,272 
0,220 0,259 
0,205 0,242 
O, 146 ] O, 173 
0,III 10,132 

0,326 0,364 
0,318 0,355 
0,312 0,347 
0,296 0,330 
0,277 O,3O8 o,1971 0,150 

0,397 
0,387 
0,378 
0,359 
0,335 
0,237 
0,181 

0,424 
0,412 
0,403 
O, 382 
0,356 
0,250 
0,190 

x[, 
](~o, O) ' ( 2 1 )  

where 
Z(~, O) 

r  o)= 
l - -  . ~  ( ~ ,  o )  

On the basis of (21) we can find an equation, different from (14), for the measurement 
error in the stationary heat flow: 

8(~) = Qe--Qo = 6(0).ii -]-- ~(P~I,j (22) 
Qo 

in which ~(0) is found from (18), and 

where 

:~@(~, o) [I+~(~, re)l, 
C~)= 1+~d(~,o) ,, 

(~, %) 
t~" i(~, o~' ~ (~' ~ = ~  xix+~) " 0 

In t h e  p a r t i c u l a r  c a s e ,  as  Pe + 0, ~(~0,  Pe) = 1, so t h a t  t h e  component (Pe)  = 0. 

The n u m e r i c a l  v a l u e s  of  t h e  i n t e g r a l s  I e ( ~  o, Pe) ,  I ( ~ o ,  0) depend ing  on r and Pe a r e  
shown in  Tab le  2, w h i l e  t h e  v a l u e s  o f  r  0) can be found in  Table  1. 

Comparison of the calculation results for the error 6 on the basis of formulas (14) 
and (22) for values of Pe = 0.5 and I; ~0 = 0.01, ...; Xt/X = 0.5 and 2 demonstrates their 
good agreement; the maximum deviation amounts to 1% and is observed when Pe = i. This allows 
us to recommend structurally simpler expressions (13) and (14) for purposes of estimating 
the static characteristics of the thermometer, situated at the surface of the massive object, 
for the range of changes in the geometric (Pc, k) and thermophysical (Xt/X, ~0) parameters 
being investigated here, and namely: 0 ~ Pe ~ I, 4 ~ k ~ 40, 0.2 ~ Xt/X ~ i0, 0 ~ ~0 ~ i. 
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Analysis of relationships (13) and (14) shows that the differences between the heat- 
exchange factors (s0, A0, st, A t ) of the object and the sensor, as well as the relationships 
of the thermal resistance h/% t of the thermometer and the thermal resistance i/s t encountered 
in the transfer of heat to the ambient medium, to the extent that these affect the magnitude 
of the measurement error in the flow of heat can be determined by the complex K [see formula 
(15)]. The function ~(~0, Pe), determined from formula (16), characterizes the effect of 
the exchange of heat in the perturbed region of the object beneath the thermometer, with 
the error being reduced as the intensity ~0 of the exchange of heat is increased. 

From (13) follows the condition of error compensation &(Pc) = 0, if we can satisfy the 
requirement K = 0, i.e., 

1 qo Ao 
1 + ~ ' t  q't A t 

In the particular case, when s t = s 0 

14 
Aoq 

1 -f a t ( t - -  to) 
&q 

q (A~t-- Ao) = ~ [ao (t  - -  to) + Aoq] 

and the minimization of the error reduces to the selection of a coating for the thermometer 
that is close in terms of radiation properties to the properties of the object, i.e., A t = 
A 0 �9 

If the conditions for the exchange of heat at the surface of the object and those of 
the thermometer are identical (s t = s0, A t = A0) , i.e., qt = q0, then, as follows from (15), 
K = -(i + I/~t )-I and the reduction in the error 6 is achieved by reducing the thermal re- 
sistance of the thermometer, i.e., by a reduction in the ~t number. 

In the absence of convective heat exchange (s 0 = s t = 0) the measurement error does 
not depend on Pe and is determined exclusively by the difference in the absorptive capaci- 
ties of the thermometer and the object: 

8(p@= A{  1. 
Ao 

As an example of utilizing relationships (13) and (14) we undertook a calculation of 
the error 6(1) in the measurement of the heat flow, based on formula (17), dependent on the 
parameter ~0 = s0R/% (Fig. 3a) and the geometric parameter k = 2R/h (Fig. 3b) for various 
values of the ratio of the thermometer thermal conductivity %t and the thermal conductivity 
% of the object (for the case in which the sensing element of the thermometer occupies its 
entire surface R e = R and A t = A0, s t = s0, qt = q0). 

Utilization of the above-proposed calculation relationships and graphs allows us to make 
practical recommendations with regard to optimizing the design of heat-flow measurement con- 
verters, wherein consideration is given to the required measurement accuracy, and also to 
provide for metrological calibrational verification of the sensors, both in the design stage, 
and under operational conditions. 

NOTATION 

r, z, axial and radial coordinates; r,, the value of r for which the mean-valued theo- 
rem is satisfied; %, %t, thermal conductivity of the object and the thermometer, respective- 
ly, W/(m'K); s0, st, coefficients of convective-radiative heat exchange of the object and 
the thermometer, respectively, W/(m2-K); A0, At, coefficients of absorption for the object 
and the thermometer, respectively; R, h, radius and thickness of the thermometer, m; Re, 
radius of the sensing element in the thermometer, m; t, temperature of the ambient medium, 
K; to, surface temperature, K: b, temperature gradient, K/m; %, temperature distortion, K; 
Q, heat flow, W; 6, relative measurement error for the heat flow; A, absolute measurement 
error for the heat flow, W; p, Hankel transform parameter, m -I. 
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